熱心網友
在直角坐標系,A(-1,2,3),B(0,4,5),C(2,6,3),角BAC的內角平分線交BC于點D。E在AD上,滿足AE=5AB+kAC,求k的值解:向量AB={1,2,2},AC={3,4,0},BC={2,2,-2}設D點坐標為(x,y,z),則AD={x+1,y-2,z-3}因為D在BC上,所以BD∥BC,有x/2=(y-4)/2=(z-5)/(-2)== y=x+4,z=5-x……⑴因為D在角BAC的平分線上,所以AD在AB、AB上的投影相等,即AB*AD/|AB|=AC*AD/|AC| == [(x+1)+2(y-2)+2(z-3)]/3=[3(x+1)+4(y-2)]/5== 2x+y-5z+15=0……⑵由⑴、⑵解得:x=3/4,y=19/4,z=17/4∴AD={7/4,11/4,5/4}AE=5AB+kAC={5,10,10}+{3k,4k,0}={5+3k,10+4k,10}因為E在AD上,即AE∥AD,有(5+3k)/(7/4)=(10+4k)/(11/4)=10/(5/4)解得:k=3。