已知f(x)=sin(x+φπ)+cos(x+φ)為奇函數(shù),則φ的一個(gè)值為()(A)0 (B)π (C)-1/4π (D)1/2π要快一點(diǎn)啊!步驟詳細(xì)一點(diǎn)!謝謝!
熱心網(wǎng)友
根據(jù)評(píng)論里修改以后的題目,應(yīng)該選擇C:-π/4。因?yàn)閒(x)=sin(x+φ)+cos(x+φ)是奇函數(shù),所以sin(x+φ)+cos(x+φ)=-[sin(-x+φ)+cos(-x+φ)],即sin(x+φ)+sin(-x+φ)=-[cos(x+φ)+cos(-x+φ)],即2sinφcosx=-2cosφcosx,即tanφ=-1,所以φ=kπ-π/4(k為整數(shù))即當(dāng)φ=kπ-π/4時(shí),f(x)是奇函數(shù),在四個(gè)選項(xiàng)里只有C符合要求(當(dāng)k=0時(shí)的值).
熱心網(wǎng)友
已知f(x)=sin(x+φ)+cos(x+φ)為奇函數(shù),則φ的一個(gè)值為()(A)0(B)π (C)-1/4π (D)1/2π解:f(x)=sin(x+φ)+cos(x+φ)=(√2)sin[(x+φ)+(π/4)]又f(x)為奇函數(shù),即f(-x)=-f(x),于是:(√2)sin[(-x+φ)+(π/4)]=-(√2)sin[(x+φ)+(π/4)]即:sin[-x+φ+(π/4)]=sin[-x-φ-(π/4)]-x+φ+(π/4)=-x-φ-(π/4) φ=-π/2四個(gè)選項(xiàng)都不對(duì)!還是我算錯(cuò)了?
熱心網(wǎng)友
f(x)=sin(x+φπ)+cos(x+φ)為奇函數(shù),0=f(0)=sin(φπ)+cos(φ),sin(-φπ)=sin(π/2-φ)1)-φπ=π/2-φ+2kπ, φ=(π/2+2kπ)/(1-π)2))φπ-π/2+φ=π+2kπ, φ=(3π/2+2kπ)/(π+1).四選項(xiàng)均錯(cuò)。