熱心網友
這是典型的a(n+1) =qan + p形式,應該轉化成a(n+1)+x=q(an+x)的形式,換成等比數列。a(n+1)+x+2(an+x) ==x=1故a(n+1)+1=2(an+1),則數列{an + 1}是以2為公比的等比數列。a(n+1)+1=2(an+1)=2^2[a(n-1)+1]=2^3[a(n-2)+1)]=...=2^(n+1)(a1 +1)=3*2^(n+1)故an + 1 = 3*2^nan = 3*2^n -1
這是典型的a(n+1) =qan + p形式,應該轉化成a(n+1)+x=q(an+x)的形式,換成等比數列。a(n+1)+x+2(an+x) ==x=1故a(n+1)+1=2(an+1),則數列{an + 1}是以2為公比的等比數列。a(n+1)+1=2(an+1)=2^2[a(n-1)+1]=2^3[a(n-2)+1)]=...=2^(n+1)(a1 +1)=3*2^(n+1)故an + 1 = 3*2^nan = 3*2^n -1