誰能幫我串一下高一數學,第二章函數的知識點啊,我總是暈暈的真的謝謝啊

熱心網友

你完全可以把你的數學課本多看幾遍,把每一句都弄懂,吃透.你覺得一遍看不懂可以看第二遍,直到看懂為止.實在不行的話,你可以向你 的老師請教.讓他幫你解決.再或者就是向你的同學問問.學數學,不要認為自己什么也學不會.說學不會,那是你在自己欺騙自己.我身邊就有這樣的例子----我的初中同學唐旭,他剛開始學函數的時候,可以說是一竅不通.但是他比較愛問,記得他的那冊課本讓他翻的沒有遍數.到最后考試了.成績喜人啊.連老師都有點刮目相看了.朋友,你也不妨試試.一個人有一個人的學習方法嗎? 可能你比較愛鉆研,也可能你比較愛問.不管怎樣總有一種適合你的的.好好去發掘吧.

熱心網友

我來簡單的說下1。定義:對于x的取值范圍內的每個值,按照某一個對應法則f,都有唯一確定的y與之對應,那么就稱y是x的函數。2。定義域:就是x的取值范圍。一般的求法:分母不為0,根式內的式子大于等于0,真數大于0,正切不取pi/2+kpi,余切不取pi+kpi,反正(余)弦的絕對值小于等于1等,如h(x)=R{f(x),g(x)](R為一種運算)那么h(x)的定義域為f(x),g(x)定義域的交集。更一般的可以推廣到n個的情況。3。值域:就是y的取值范圍。一般的求法:基本不等式,二次函數,三角函數。4。反函數:一般的函數用x表示y,反函數就是用y表示x。反函數的圖象與原函數的圖象關于y=x對稱。5。奇偶性:1)奇函數:若函數的定義域關于原點對稱,并對定義域內的每一 個x都有f(-x)=-f(x)就稱為奇函數。 2)偶函數:若函數的定義域關于原點對稱,并對定義域內的每一 個x都有f(-x)=f(x)就稱為偶函數。6。單調性:在f(x)定義域內任意取x1,x2且x1<x2有f(x1)≤f(x2)就稱f (x)為單調增函數。 在f(x)定義域內任意取x1,x2且x1<x2有f(x1)≥f(x2)就稱f(x) 為單調減函數。7。極值:極值就是函數在某一個區間上的最大(小)值。好了暫時說那么多,希望對你有幫助。