曲線y=x(x+1)(x+2)(x+3)……(x+100)在原點處的切線方程是?
熱心網友
曲線y=x(x+1)(x+2)(x+3)……(x+100)在原點處的切線方程是?解:對y求導y'=y/[1/x+1/(x+1)+1/(x+2)+...+1/(x+100)]令x=0,y'=1*2*3*...*100∴曲線在原點處的切線方程y=y'x=1*2*3*...*100x
熱心網友
對函數y=x(x+1)(x+2)......(x+100)求導數,得到y'=(x+1)(x+2)......(x+100)+x(x+2)(x+3)......(x+100)+x(x+1)(x+3)......(x+100)+......+x(x+1)(x+2)......(x+99)=(x+1)(x+2)......(x+100)+y/(x+1)+y/(x+2)+......+y/(x+100)---y'(0)=1*2*3*......*100=100!所以原點處的切線方程是 y=100!*x.(好大的斜率,此直線簡直就是y軸了)