已知a,bεR+,nεN, 求證(a+b)(a^n+b^n)≤2(a^(n+1)+b^(n+1))
熱心網友
2[a^(n+1)+b^(n+1)] -(a+b)(a^n+b^n)=2[a^(n+1)+b^(n+1)] -(a*a^n+a*b^2+b*a^n+b*b^n)=2[a^(n+1)+b^(n+1)] -[a^(n+1)+a*b^2+b*a^n+b^(n+1)]=a^(n+1)-a*b^2-b*a^n+b^(n+1)=(a-b)(a^n-b^n)∵a,b∈R+,∴(a-b)與(a^n-b^n)的符號相同(同正或同負)∴2[a^(n+1)+b^(n+1)] -(a+b)(a^n+b^n)=(a-b)(a^n-b^n)≥0∴(a+b)(a^n+b^n)≤2[a^(n+1)+b^(n+1)]得證
熱心網友
設ab2(a^(n+1)+b^(n+1)) =2a*a^n+2b*b^n[1](a+b)(a^n+b^n)=a*a^n+ba^n+a*b^n+b*b^n[2][1]-[2]得(a-b)a^n+(b-a)b^na=b,a^n=b^n所以(a-b)a^n+(b-a)b^n=0,即:(a+b)(a^n+b^n)≤2(a^(n+1)+b^(n+1))