求值域y=sinxcosx+sinx+cosx
熱心網友
解1。令t=sinx+cosx---t=2^。5*sin(x+pi/4)----2^。5=t^2=1+2sinxcosx---sinxcosx=(t^2-1)/2y=(t^2-1)/2+t=(t^2+2t-1)/2=[(t+1)^2-2]/2=0。5(t+1)^2-1t屬于[-2^。5,2^。5]---ymin=y(-1)=-1 & ymax=y(2^。5)=1/2+2^。5值域是[-1,1/2+2^。5]解2。y=。5*sin2x+2^。5*cos(x-pi/4)=0。5cos(pi/2-2x)+2^。5*cos(x-pi/4)=0。5cos[2(x-pi/4)]+2^。5cos(x-pi/4)=[cos(x-pi/4)]^2+2^。5*cos(x-pi。4)-1/2=[cos(x-pi/4)+(2^。5)/2]^2-1-1=-1= 設t=sinx+cosx=根號2倍的sin(x+四分之派)取值范圍是負的根號二到正的根號二而y=0.5倍的(t+1)的平方再減一所以y的范圍是0.5-根號二到0.5+根號二熱心網友