M={x|2x^2-x-3>0},N={x|x^2-(k+2)x-6k^2+11k-3<0}滿足M∩N≠空集,求實數k的取值范圍。希望有詳細的過程。謝謝!
熱心網友
2x^2-x-30解得x3/2或x3/2或xx2時3k-13-2k即k4/5時所以3k-13/2或3-2k5/6或k2所以k5/6(ⅱ)當x13/2k5/6或k<3/4}
熱心網友
要M交N不為空,首先N不能為空,即b^2-4ac=(k+2)^2+4(6k^2-11k-3)或=0本題中b^2-4ac=25k^2-40k-8 恒大于零。計算M中x的范圍:(2x-3)(x+1)0 = x3/2N中方程可寫為:x^2-(k+2)x-(2k-3)(3k-1)[x-(3k-1)][x+(2k-3)]3k-1,k3/2或3k-19/4或k k-2,則2k-33/2,得k5/6 = -2