我4科成績達到本科線,但數學好差,我已經花了很多時間在數學上,平時還可以,但一到考試就不行了,我該怎么辦
熱心網友
喔,你的問題很普遍啊。就是心理問題。想想其他課也不錯嘛,怎么一見到數學就掉鏈子呢?是不是你以前的 數學老師不好啊?比如說我的物理老師還嚴厲啊 。老是說這么簡單的問題我們還做錯之類的 。弄的我們考試見到物理都格外謹慎。數學不怎么難嘛。看樣子是你自己沒有學好的原因啊,要好好努力。要高考基礎是很重要的 。多做題,做的多了心里就有底了,知道考試一般會考什么,其實也沒什么好害怕的。就那幾種類型而已 嘛
熱心網友
請教:什么叫“4科成績達到本科線”,本科線是按各科定的嗎?
熱心網友
發現問題比解決問題更重要,高考以前為了高考努力高考失利就為了復讀努力
熱心網友
多做題,其實沒有什么竅門或者捷徑的。我現在就努力做題,每天一張數學試卷……
熱心網友
你的情況與我高中一樣,但不要緊,還有時間去調整、解決。依我看,還是你的基礎出了問題,沒有掌握牢固。無論誰在考試時都會緊張,但這絕不是你考試靠不好的原因。平常努力了,而且堅持不懈,你一定會有你那應有的回報。相信自己的能力,平常多抓基礎,適當做些適合你自身的難題,堅持到底,(記得一定要下個學期盡量多做題目),相信你的高考成績一定不會差。
熱心網友
我覺的最重要的還是自己的問題啊 呵呵 當初高考時 因為怕自己上不了600分 壓力特別大 所以一次不如一次 但最后自我安慰啊 說大不了復讀 所以最后一段時間一點壓力都沒有 高考考的出奇的好啊 所以 放松啊 數學這東西急不來啊 你所能做的 是少丟分 不要粗心啊
熱心網友
這一定是你的考試狀態不好!平時努力就不一定代表考試可以取得成功!還有我參加過高考,數學考了120多分。雖然說還不算很高,但也足可以把我自己多年總結的經驗告訴你。這是一篇我曾經發表過的文章,還獲過獎呢!數學總復習抓住四條線:1。抓好基礎是根本在按照《考試說明》的要求,對知識內容進行全面復習的基礎上,要注意突出重點。重點知識是數學科知識休系的主要內容,也是高考的重點。如數列、不等式、函數、三角函數的圖像和性質及恒等變換,空間圖形中元素的位置關系,直線和圓錐曲線的性質,解析幾何的基本思想等,要重在對這些內容的理解、掌握和靈活應用,這是最重要的基礎。抓基礎時,要重視課本,尤其要重視重要概念、公式、法則的形成過程和例題的典型作用,在高考數學試題中有相當多的題目是課本上基本題目的直接引用或稍作變形而得來的。沒有扎實的基礎,搞綜合提高是不會有好效果的。即使去解綜合題時,也脫離不開基礎知識做基礎,抓好基礎是根本,要堅持不懈。2。掌握知識的內在聯系和知識系統,構建知識結構,形成知識網絡數學高考試題的設計,重視數學知識的綜合和知識的內在聯系,尤其重視在知識網絡的交匯點設計試題。高三數學總復習的過程,是對數學基礎知識和基本方法不斷深化的過程,要從本質上認識和理解數學知識之間的聯系,從而加以分婁、歸納、綜合,形成一個知識的結構系統,這個結構系統反映在腦中,數學知識不是無序的堆積,而是一個條理化、排列有序、知識之間關系清晰分明的體系。在解題目時,就可根據題目提供的信息,提取相關的知識點,進行有機組合,探索解題的思路和方法,同時注意解題時的優化組合。如在數學中,函數、方程和不等式之間的聯系,它們之間在解決問題時相互轉化,方程和不等式的問題有時通過函數的思想方法去解決,函數中的問題有時通過方程或不等式去解決,研究方程的解的問題,有時通過構造函數來解決。如解析幾何中曲線與方程和代數中的函數與圖像之間的聯系,方程的曲線與函數的圖像之間相同點與不同點,何時可以互相轉化等。因此,只有搞清楚知識之間的內在聯系,形成知識結構和網絡,在解題時才能從不同角度去分析解決,才能對知識融會貫通,運用自如。3。增強運用數學思想方法的意識性數學思想和方法是數學知識在更高層次上的抽象和概括,它蘊含于數學知識的發生、發展和應用的過程中。數學高考試題強調考能力,考能力往往和考查對數學思想方法的理解和運用相結合,考能力寄寓于數學思想方法之中。對數學思想方法,首先要領悟到蘊含在數學概念、定義、定理、公式、法則中數學思想方法,它體現了數學知識的發生、發展過程。如對函數奇偶性的判定,對一個函數(x),它的奇偶性只有四種可能,是奇函數不是偶函數,是偶函數不是奇函數,既是奇函數又是偶函數,既不是奇函數又不是偶函數。要理解各自的判定方法,并能構造各類函數,如函數f(x)=0(x? R)或x? [-a,a](a0),它既是奇函數又是偶函數,函數f(x)=a(a≠0的常數),x? R或x? [-a,a](a0)時是偶函數不是奇函數;而函數f(x)=0,f(x)=a,當x? [0,+¥ )或x? [-3,+8]時,它既不是奇函數又不是偶函數。另外,研究logax的性質要注意分a1和00(m? R)。能意識到運用分類討論的思想方法進行求解。首先分為m+3=0和m+3≠0兩類,,對m+3≠0又分為m+30和m+30時,又需考慮到Δ0三種情況;對m+30的情況分別加以求解。對數學思想方法的理解和運用,一定要和數學知識內容和問題相結合,領悟到它在解決數學問題時的作用和意義。4。注重過程是提高能力的關鍵過程主要指知識的形成過程、數學理論的形成過程和解決數學問題時的思維過程。數學能力的提高只有在學習和解決數學問題的過程中才能實現,在高三總復習過程中,要養成對典型問題進行反思的習慣是很有好處的。如自己是否很好地理解題意,弄清題設和結論之間的內在聯系,較好地找到解決問題的突破口,自己所用的解題方法是否合理簡捷,有沒有更好的解法,解題過程是否正確無誤,表述是否符合邏輯,是否全面,解題所用的方法是否有廣泛的應用價值,如果適當改變題目的條件或結論,問題將會再現什么變化,與過去做過的題目之間有沒有聯系等。當你領悟了蘊含在問題中的提出、完善和深化的全過程,掌握了貫穿在分析問題解決問題時的數學思維方法,就會達到數學知識和方法的融會貫通,就會提高綜合運用數學知識和方法及解決問題的能力。 或許你平時足夠的努力,但還是不見成效,為什么呢?還是不太愛在學習中善于總結,所以希望你以后可以在學習的過程中挖掘一點點東西!我要說的就這么多了,不知道對你是否有幫助。不過還是要記住,無論在什么情況下努力是必須的,自信更是必要的!!最后祝你在高考中能夠取得好的成績!!! 。
熱心網友
要相信自己哦!
熱心網友
我覺得還是偏科的問題,可能有些知識點學的不牢固不靈活,綜合性考試一個題目往往綜合考查幾個點,稍一疏忽就會出錯,所以每個章節的每類題型都要牢牢掌握,然后才能舉一反三靈活運用。另外做題也要講究規范,考試是按照作題步驟給分的,結果對,但是如果中間步驟丟三落四,也會扣掉很多分數。另外還有審題,有時候也許只是隔了一層窗戶紙,分析到位,豁然開朗,不到位,就束手無策。我覺得你該和數學老師談談,只有平時了解你的學習情況并且拿著你的試卷詳細分析,才能確切知道失分的原因在哪里,自己多分析一下試題,尤其失分的題目,然后結合老師給你做的分析,癥結就找到了。找到癥結問題就解決了一半,然后堅持不懈地多思考多做題多請教同學老師,成績一定會提上來的。功到自然成嘛,相信自己一定會學好得!
熱心網友
我看你是太緊張了,放松點啊。
熱心網友
我建議你去看看心理醫生你是不是有考試綜合癥呀我當初情況和你差不多數學就是上不去結果我老爸和我深談了一晚讓我放下包袱,成績還不錯你也可以和家長談談
熱心網友
我看你是太緊張了,放松點啊。