若Sn是數(shù)列{An}的前n項(xiàng)和,且Sn=A^n-1(A≠0且A≠1)則{An}是( )A.等比數(shù)列但不是等差數(shù)列B.等差數(shù)列但不是等比數(shù)列C.既是等差又是等比數(shù)列D.既非等差又非等比數(shù)列請(qǐng)簡(jiǎn)要說(shuō)明理由.

熱心網(wǎng)友

因?yàn)?S(n) = A^n - 1 ( n ≥ 1 )所以 S(n-1) = A^(n-1) - 1 ( n ≥ 2 )相減 得 An = (A-1)*A^(n-1) ( n ≥ 2 )而 A1 = S1 = A-1 也符合上式所以 An = (A-1)*A^(n-1) ( n ∈ N* )所以 A(n-1) = (A-1)*A^(n-2) ( n ≥ 2 )所以 An / A(n-1) = A 是常數(shù)所以 { An } 是等比數(shù)列 顯然不是等差數(shù)列( 否則{ An }是常數(shù)列 )