已知f(x+y)+f(x-y)+2f(x)*f(y),對(duì)一切實(shí)數(shù)x,y都成立,且f(0)=/0,求證f(x)是偶函數(shù)

熱心網(wǎng)友

題目是不是寫錯(cuò)了應(yīng)該是f(x+y)+f(x-y)=2f(x)f(y)吧如果是則這樣做:令x=y=0,則2f(0)=2f(0)^2,所以f(0)=1或0,因?yàn)閒(0)≠0,所以f(0)=1,再將y換成-x,并且令x=0,則f(-x)+f(x)=2f(0)f(-x)=2f(-x)所以f(x)=f(-x),所以f(x)為偶函數(shù)