一物體做直線運動經過A、B、C、三點。AB間的加速度為a,BC間的加速度為b。AB=BC。 B點的速度為(VA+VC)/2。求加速度a與b的關系。(a>b ,a=b , a<b)。請附解答步驟。
熱心網友
利用 V2 ^2 - V1 ^2 = 2*加速度*距離b = (VC^2 - VB^2) /2*BCa = (VB^2 - VA^2) /2*AB(VC^2 - VB^2 ) - (VB^2 - VA^2)=VA^2+VC^2 - 2*VB^2=VA^2 +VC^2 - (VA+VC)^2 /2=(VA^2 - 2*VA*VC + VC^2)/2=(VA-VC)^2 /2假設 VA = VC 則 VA = VB = VC所以 a = b =0由題意,a b 均不為0 所以 VA = VC 不成立因此 b-a = [(VA-VC)^2 /2] /2*BC 0因此 b a