求y=log2^[(x+1)/(x-1)]的反函數

熱心網友

y=log[(x+1)/(x-1)] 底數2 ?.---2^y=(x+1)/x-1)---x*2^y-2^y=x+1---x(2^y-1)=2^y+1---x=(2^y+1)/(2^y-1)交換x,y得到反函數y=(2^x+1)/(2^x-1) (x0)

熱心網友

y=log2[(x+1)/(x-1)]2^y=(x+1)/(x-1)=[(x-1)+2]/(x-1)=1+2/(x-1)2/(x-1)=2^y-1x-1=2/(2^y-1)x=1+2/(2^y-1)=(2^y-1+2)/(2^y-1)=(2^y+1)/(2^y-1)交換x、y∴y=log2[(x+1)/(x-1)]的反函數是:y=(2^x+1)/(2^x-1)

熱心網友

反函數里是以原來的Y作為變量的,對數的反函數是與它同底的指數函數。應變為:[(x+1)/(x-1)]=2的y次方,然后再將等號左邊進行變動。為: x+1=(x-1)乘以2的y次方, x-x乘以2的y次方=-1-2的y次方, x(1-2的y次方)=-1-2的y次方 x=-1-2的y次方/1-2的y次方 習慣上變量寫為x,值為y,所以最后 y=-1-2的x次方/1-2的x次方.