計算 lim n^2[(k/n - 1/(n+1) - 1/(n+2) - 1/(n+3)-… -1/(n+k)] n→∞
熱心網友
Sn=n^2*[k/n-1/(n+1)-1/(n+2)-1/(n+3)-......-1/(n+k)]=n^2*{[1/n-1/(n+1)]+[1/n-1/(n+2)]+[1/n-1/(n+3)]+......+[1/n-1/(n+k)]}=n^2*{1/[n(n+1)]+2/[n(n+1)]+3/[n(n+3)]+......+k/[n(n+k)]}=n/(n+1)+2n/(n+2)+3n/(n+3)+......+kn/(n+k)n→+∞:limSn=1+2+3+......+k=k(k+1)/2.說明:k是常量,不跟隨n的變化而變化。 剛才那個解答已經被“超過10000字”的錯判毀滅,現在究竟如何,將拭目以待。
熱心網友
中括號里面把k/n分成n個1/n1/n - 1/(n+1) = 1/n(n+1)1/n - 1/(n+2) = 2/n(n+2)...1/n - 1/(n+k) = k/n(n+k)n^2乘進去,每一項的極限分別為1, 2, ... k則結果為k(k+1)/2